Basic Knowledge Graph in Neo4j

This repo try extract data from json raw data and build Knowledge graph in Neo4j

Raw Data Source:

https://github.com/liuhuanyong/QASystemOnMedicalKG/tree/master/data

Codes:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#encoding:utf8
import os
import re
import json
import codecs
import threading
from py2neo import Graph
import pandas as pd 
import numpy as np 
from tqdm import tqdm 

### Get data Info
def print_data_info(data_path):
    triples = []
    i = 0
    with open(data_path,'r',encoding='utf8') as f:
        for line in f.readlines():
            data = json.loads(line)
            print(json.dumps(data, sort_keys=True, indent=4, separators=(', ', ': '),ensure_ascii=False))
            i += 1
            if i >=5:
                break
    return triples

### Extraction Object
class MedicalExtractor(object):
    def __init__(self):
        super(MedicalExtractor, self).__init__()
        self.graph = Graph(
            host="127.0.0.1",
            http_port=7474,
            user="neo4j",
            password="123456")

        # 共8类节点
        self.drugs = [] # 药品
        self.recipes = [] #菜谱
        self.foods = [] # 食物
        self.checks = [] # 检查
        self.departments = [] #科室
        self.producers = [] #药企
        self.diseases = [] #疾病
        self.symptoms = []#症状

        self.disease_infos = []#疾病信息

        # 构建节点实体关系
        self.rels_department = [] # 科室-科室关系
        self.rels_noteat = [] # 疾病-忌吃食物关系
        self.rels_doeat = [] # 疾病-宜吃食物关系
        self.rels_recommandeat = [] # 疾病-推荐吃食物关系
        self.rels_commonddrug = [] # 疾病-通用药品关系
        self.rels_recommanddrug = [] # 疾病-热门药品关系
        self.rels_check = [] # 疾病-检查关系
        self.rels_drug_producer = [] # 厂商-药物关系

        self.rels_symptom = [] #疾病症状关系
        self.rels_acompany = [] # 疾病并发关系
        self.rels_category = [] # 疾病与科室之间的关系
        
    def extract_triples(self,data_path):
        print("从json文件中转换抽取三元组")
        with open(data_path,'r',encoding='utf8') as f:
            for line in tqdm(f.readlines(),ncols=80):
                data_json = json.loads(line)
                disease_dict = {}
                disease = data_json['name']
                disease_dict['name'] = disease
                self.diseases.append(disease)
                disease_dict['desc'] = ''
                disease_dict['prevent'] = ''
                disease_dict['cause'] = ''
                disease_dict['easy_get'] = ''
                disease_dict['cure_department'] = ''
                disease_dict['cure_way'] = ''
                disease_dict['cure_lasttime'] = ''
                disease_dict['symptom'] = ''
                disease_dict['cured_prob'] = ''

                if 'symptom' in data_json:
                    self.symptoms += data_json['symptom']
                    for symptom in data_json['symptom']:
                        self.rels_symptom.append([disease,'has_symptom', symptom])

                if 'acompany' in data_json:
                    for acompany in data_json['acompany']:
                        self.rels_acompany.append([disease,'acompany_with', acompany])
                        self.diseases.append(acompany)

                if 'desc' in data_json:
                    disease_dict['desc'] = data_json['desc']

                if 'prevent' in data_json:
                    disease_dict['prevent'] = data_json['prevent']

                if 'cause' in data_json:
                    disease_dict['cause'] = data_json['cause']

                if 'get_prob' in data_json:
                    disease_dict['get_prob'] = data_json['get_prob']

                if 'easy_get' in data_json:
                    disease_dict['easy_get'] = data_json['easy_get']

                if 'cure_department' in data_json:
                    cure_department = data_json['cure_department']
                    if len(cure_department) == 1:
                         self.rels_category.append([disease, 'cure_department',cure_department[0]])
                    if len(cure_department) == 2:
                        big = cure_department[0]
                        small = cure_department[1]
                        self.rels_department.append([small,'belongs_to', big])
                        self.rels_category.append([disease,'cure_department', small])

                    disease_dict['cure_department'] = cure_department
                    self.departments += cure_department

                if 'cure_way' in data_json:
                    disease_dict['cure_way'] = data_json['cure_way']

                if  'cure_lasttime' in data_json:
                    disease_dict['cure_lasttime'] = data_json['cure_lasttime']

                if 'cured_prob' in data_json:
                    disease_dict['cured_prob'] = data_json['cured_prob']

                if 'common_drug' in data_json:
                    common_drug = data_json['common_drug']
                    for drug in common_drug:
                        self.rels_commonddrug.append([disease,'has_common_drug', drug])
                    self.drugs += common_drug

                if 'recommand_drug' in data_json:
                    recommand_drug = data_json['recommand_drug']
                    self.drugs += recommand_drug
                    for drug in recommand_drug:
                        self.rels_recommanddrug.append([disease,'recommand_drug', drug])

                if 'not_eat' in data_json:
                    not_eat = data_json['not_eat']
                    for _not in not_eat:
                        self.rels_noteat.append([disease,'not_eat', _not])

                    self.foods += not_eat
                    do_eat = data_json['do_eat']
                    for _do in do_eat:
                        self.rels_doeat.append([disease,'do_eat', _do])

                    self.foods += do_eat

                if 'recommand_eat' in data_json:
                    recommand_eat = data_json['recommand_eat']
                    for _recommand in recommand_eat:
                        self.rels_recommandeat.append([disease,'recommand_recipes', _recommand])
                    self.recipes += recommand_eat

                if 'check' in data_json:
                    check = data_json['check']
                    for _check in check:
                        self.rels_check.append([disease, 'need_check', _check])
                    self.checks += check

                if 'drug_detail' in data_json:
                    for det in data_json['drug_detail']:
                        det_spilt = det.split('(')
                        if len(det_spilt) == 2:
                            p,d = det_spilt
                            d = d.rstrip(')')
                            if p.find(d) > 0:
                                p = p.rstrip(d)
                            self.producers.append(p)
                            self.drugs.append(d)
                            self.rels_drug_producer.append([p,'production',d])
                        else:
                            d = det_spilt[0]
                            self.drugs.append(d)

                self.disease_infos.append(disease_dict)

    def write_nodes(self,entitys,entity_type):
        print("写入 {0} 实体".format(entity_type))
        for node in tqdm(set(entitys),ncols=80):
            cql = """MERGE(n:{label}{{name:'{entity_name}'}})""".format(
                label=entity_type,entity_name=node.replace("'",""))
            try:
                self.graph.run(cql)
            except Exception as e:
                print(e)
                print(cql)
        
    def write_edges(self,triples,head_type,tail_type):
        print("写入 {0} 关系".format(triples[0][1]))
        for head,relation,tail in tqdm(triples,ncols=80):
            cql = """MATCH(p:{head_type}),(q:{tail_type})
                    WHERE p.name='{head}' AND q.name='{tail}'
                    MERGE (p)-[r:{relation}]->(q)""".format(
                        head_type=head_type,tail_type=tail_type,head=head.replace("'",""),
                        tail=tail.replace("'",""),relation=relation)
            try:
                self.graph.run(cql)
            except Exception as e:
                print(e)
                print(cql)

    def set_attributes(self,entity_infos,etype):
        print("写入 {0} 实体的属性".format(etype))
        for e_dict in tqdm(entity_infos[892:],ncols=80):
            name = e_dict['name']
            del e_dict['name']
            for k,v in e_dict.items():
                if k in ['cure_department','cure_way']:
                    cql = """MATCH (n:{label})
                        WHERE n.name='{name}'
                        set n.{k}={v}""".format(label=etype,name=name.replace("'",""),k=k,v=v)
                else:
                    cql = """MATCH (n:{label})
                        WHERE n.name='{name}'
                        set n.{k}='{v}'""".format(label=etype,name=name.replace("'",""),k=k,v=v.replace("'","").replace("\n",""))
                try:
                    self.graph.run(cql)
                except Exception as e:
                    print(e)
                    print(cql)


    def create_entitys(self):
        self.write_nodes(self.drugs,'药品')
        self.write_nodes(self.recipes,'菜谱')
        self.write_nodes(self.foods,'食物')
        self.write_nodes(self.checks,'检查')
        self.write_nodes(self.departments,'科室')
        self.write_nodes(self.producers,'药企')
        self.write_nodes(self.diseases,'疾病')
        self.write_nodes(self.symptoms,'症状')

    def create_relations(self):
        self.write_edges(self.rels_department,'科室','科室')
        self.write_edges(self.rels_noteat,'疾病','食物')
        self.write_edges(self.rels_doeat,'疾病','食物')
        self.write_edges(self.rels_recommandeat,'疾病','菜谱')
        self.write_edges(self.rels_commonddrug,'疾病','药品')
        self.write_edges(self.rels_recommanddrug,'疾病','药品')
        self.write_edges(self.rels_check,'疾病','检查')
        self.write_edges(self.rels_drug_producer,'药企','药品')
        self.write_edges(self.rels_symptom,'疾病','症状')
        self.write_edges(self.rels_acompany,'疾病','疾病')
        self.write_edges(self.rels_category,'疾病','科室')

    def set_diseases_attributes(self): 
        t=threading.Thread(target=self.set_attributes,args=(self.disease_infos,"疾病"))
        t.setDaemon(False)
        t.start()


    def export_data(self,data,path):
        if isinstance(data[0],str):
            data = sorted([d.strip("...") for d in set(data)])
        with codecs.open(path, 'w', encoding='utf-8') as f:
            json.dump(data, f, indent=4, ensure_ascii=False)

    def export_entitys_relations(self):
        self.export_data(self.drugs,'./graph_data/drugs.json')
        self.export_data(self.recipes,'./graph_data/recipes.json')
        self.export_data(self.foods,'./graph_data/foods.json')
        self.export_data(self.checks,'./graph_data/checks.json')
        self.export_data(self.departments,'./graph_data/departments.json')
        self.export_data(self.producers,'./graph_data/producers.json')
        self.export_data(self.diseases,'./graph_data/diseases.json')
        self.export_data(self.symptoms,'./graph_data/symptoms.json')

        self.export_data(self.rels_department,'./graph_data/rels_department.json')
        self.export_data(self.rels_noteat,'./graph_data/rels_noteat.json')
        self.export_data(self.rels_doeat,'./graph_data/rels_doeat.json')
        self.export_data(self.rels_recommandeat,'./graph_data/rels_recommandeat.json')
        self.export_data(self.rels_commonddrug,'./graph_data/rels_commonddrug.json')
        self.export_data(self.rels_recommanddrug,'./graph_data/rels_recommanddrug.json')
        self.export_data(self.rels_check,'./graph_data/rels_check.json')
        self.export_data(self.rels_drug_producer,'./graph_data/rels_drug_producer.json')
        self.export_data(self.rels_symptom,'./graph_data/rels_symptom.json')
        self.export_data(self.rels_acompany,'./graph_data/rels_acompany.json')
        self.export_data(self.rels_category,'./graph_data/rels_category.json')




if __name__ == '__main__':
    path = "./graph_data/medical.json"
    extractor = MedicalExtractor()
    extractor.extract_triples(path)
    extractor.export_entitys_relations()

Final Results Demo:

img